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ON SEGNENTATION OF TIME SERIESe

Stanley L. Sclove
University of Illinois at Chicago Circle

i ADSTRACT

1 The problem of partitioning a time-series into segments is
considered. The segments fall into classes, which may correspond to
phases of a cycle (recession, recovery, expansion in the business

i cycle) or to portions of a signal obtained by scanning (background/
clutter, target, background/clutter again, another target, etc.; or
nornal tissue, tumor, normal tissve). Parametric fanilies of

distributions are considered, a set of parameter values being

associated vith each class. With each observaticn i: associated an
unobservable label, indicating from which class the observation

arose. The label process is modeled as a MWarkov chain.

Segnentation algorithns are obtained by applying a method of
iterated maxinun likelihood to the resulting likelihood function. i
In this paper special attention is given to the situation in which
the observations are tonditionally independent, jiven the labels.

A nunerical example is given. Choice of the number of classes, using

Akaike’s automatic (model) identification criterion (AIC), is

illustrated. Prediction is considered.

Key UWords & Phrases: forecasting; prediction; signal analysis;
isodata procedure; Markov chains; maxinum likelihood; Akaike’s
automatic (model) identification criterion (AIC).

sInvited Paper, Special Session on Cluster Analysis, 789th Meeting,
American Mathematical Society, University of Massachusetts,
Anherst, MA, October 14-18, 1981




ON SEGMENTATION OF TIME SERIES*

Stanley L. Sclove
University of Illinois at Chicago Circle

1. Introduction

The problem of "segmentation'" conaidered here is: Given a time series
{xt, t=1,2,...,n}, partition the set of values of t into sub-series (segments,
regimes) which are relatively homogeneous. The segments are assumed to fall
into several classes. In processes which may be considered as cycles the
classes are phases of the cycle.

Examples. (i) Segment an economic time series into periods of recession,
recovery, and expansion. Here there are three classes of segment. (ii) Seg-
ment an electrocardiogram into rhythmic and arhythmic periods (two classes
of segment). (iii) Segment an electroencephalogram of a sleeping person
into periods of deep sleep and restless or fitful sleep (two classes of
segment). (iv) Segment a received signal into segments of background,
target, background again, another target, etc.

The observation X may be a scalar, vector, or matrix--any element of

a linear space, for which the operations of addition and scalar multiplica- i
tion are defined. (One needs to perform such operations as X, = CX,_1»
where ¢ is a scalar.) ]

In some applications the definition of the classes involves the values
of the observed x; in others, their definition may be logically independent

of the value-space of X. In the former case the classes may be viewed simply

as a partition of the value-space of X,

*Invited Paper, Special Session on Cluster Analysis, 789th Meeting, American
Mathematical Society, University of Massachusetts, Amherst, MA, October 16-18, *
1981 !




2. The Model

One can imagine a series which is usually relatively smooth but occa-
sionally rahter jumpy as being composed of sub-series which are first-order
autoregressive [AR(1)], the autocorrelation coefficient ¢ being positive
for the smooth segments and negative for the jumpy ones. In a simple case
one might try fitting a segmentation with two classes given by AR(1;¢1)
and AR(1;¢2), where one of the ¢'s is positive and the other is negative.

The mechanism generating the process changes from time to time, and
these changes manifest themselves at some unknown time points (epochs)

Tys Toseess To g that is, there are m segments. The integer m and the
epochs Tg’ g=1,2,...,m=1, are unknown. Generally there will be fewer than
m generating mechanisms. The number of mechanisms (classes) will be denoted
by k; it will be assumed that k is at most m. In some situatiomns, k is
specified; in others, it is not. With ghg c-th class is associated a
stochastic process, Pc’ say. For example, above we spoke of a situation
with k=2 classes, where, for c=1,2, the process Pc is AR(1;¢C).

Now with the t-th observation (t=1,2,...,n) assoclate the label Yeo
which is equal to c if and only if x, arose from class ¢, c=1,2,...,k. Each

time-point t gives rise to a pair (xt’Yt)’ where x_ is observable and Ye is

t
not. The process {xt} is the observed time series, and {Yt} will be called

the label process.

Define a segmentation, then, as a partition of the time index set
{t: t=1,2,...,n} into subsets Sl-{1,2,...,t1}, S, =’{t:1+1,...,t:2}, ceny

S = {t

m m-1 172 m-1

segment. The integer m is not specified. In the context of this model,

+1,...,n}, where t_<t.<...<t <t_=n. Each subset Sg is a

to segment the series is merely to estimate the y's.




The idea underlying the development in the present paper is that of

transitions between classes. The labels Yt will be treated as random variables

Pt with transition probabilities Pr(rttdlrt_l-c) = P.g° taken as stationary,
i.e., independent of t. The matrix of transition probabilities will be denoted
by B, that is, P = [P.gleay o,k
d=1,2,...,k
If a process 1is to be strictly cyclic, like intake, compression, combustion
for a combustion engine, or recession to recovery to expansion to recession, etc.,
in the business cycle, then this this condition can be imposed by using a
transition probability matrix such as the following, with zeros in the appro-

priate places.
Label at time t

Riéession Eiéansion RZéovery

Label at 1¢ Recesslon P11 P12 P13™0
time t-1 2° Recovery P10 Py P23
3: Expansion Py p32=0 Py

Later we shall consider a matrix like this but with different restrictions;
namely, we shall allow transitions only to adjacent states (classes). See
Section 4.2.

Segmentation will involve the simultaneous estimation of the parameters

of the stochastic processes Pc’ c=1,2,...,k, the transition probability matrix

P, and the labels {Yt’ t=1,2,...,n}.

A joint probability density function (p.d.f.) for {(xt,rt), t=1,2,..,.,n}

is, using f as a generic symbol for any p.d.f., and successively conditioning

each of Fl, xl, Fz, X2, F3, X3, cvey xn on all preceding X'x and 's,




e

POV P

n
f(Yl)f(xllyl)I:I f(yt|xt—1’yt—1’°°°’Yl)f(xtlyt’xt—l’yt‘l""’Yl)'

The working assumptions of this paper are the following.

(A.1) The Y, are a first-order stationary Markov chain,. independent of the x's:

FOr x Yo _qoeeoaxpy)) = P (2.2)

Ye-1Ye
(A.2) The random variable Xt depends upon the past only through its own label
and through previous X's, not through previous labels:

f(xtIYt’xt—l’Yt-l""’xl’Yl) = f(xtlyt,xt_l,...,xl) . (2.3)

With these assumptions (2.1) becomes

n
fCy O Ex v DT T FOx |y ox L ,eeox) (2.4)
IR L R S R R A e 1
Note that this is
T 1T ngd v TT
! p fFly, )E(x,]Y,) FOR Y 0%, yeun,x) (2.5)
c=1 q=1 ©d 1 117 L, t' 't e-1 17’

where ncd = number of transitions from class ¢ to class d (unobservable).

This model, with transition probabilities, has certain advantages over
a model which uses only the epochs (change-points). The epochs are discrete
parameters, and, even if the corresponding generalized likelihood ratio were
asymptotically chi-square, the number of degrees of freedom would not be
clear. On the other hand, the transition probabilities vary in an interval
and it is clear that they constitute a set of k(k-1) free parameters.

Examples. (1) If each class-conditional process Pc is a first-order
Markov process, then

f(xt|yt.xt_1,...,x1) = f(xtlyt,xt_l). (2.6)

(ii) If in addition the c-th class-conditional process is Gaussian first-order
autoregressive with autoregression coefficient oc and constant term Gc’ with

common variance 02, then (2.6) holds with

) = (2w02)-1/2exp[-uic/(202)],

f(xtlyt-c,x

t-1




u = X - X
t (¢Ct

te 1 + Gc) *

E.g., the value of the likelihood for Yy =] = Y2 = .., = Ym and Ym+l' 2

= Yoo T et =Y, is, for given Xy
m-1 n-m~2 2,-(n-1)/2 _ 2
where
q = ) [x, - (¢;x . +68)]° + [x - (6,x__, +6)1".

In the simplest case the X's are (conditionally) independent, given the y's.

Then f(xtlyt,xt_l,...,xl,yl) = f(xtIYt)' We shall pay special attention to
this case in the present paper. The p.d.f.'s f(xlyt=c), c=1,2,...,k, are called
the class-conditional densities. In the parametric case the class-conditional
density takes the form

f(x [v,=e) = 8(x.;8), (2.7)
where B is a parameter indexing a family of p.d.f.'s of form given by g.

3. An Algorithm

3.1. Development of the algorithm

The likelihood L is (2.4) or (2.5), considered as a function of the
parameters, for fixed {xt}. From (2.4), (2.5), and (2.7), the likelihood L

can be written in the form

L = A({pcd})B({Yt}’{Bc})' (3.1)

Hence, for fixed values of the y's and B's, L is maximized with respect to the
k k n

p's by maximizing factor A. But A = T_T T—T pc:d. The n.q are specified

c=1l d=1
by the y's. So from the usual multinomial model, it follows that the maximum

likelihood estimates of the p's, for fixed values of the other parameters,

are given by




= ncd/nc' (3.2)

where

3 = + + ... + .
: N Ml nc2 Mok

Further, given the p's and y's, the estimates of the distributional parameters

(
f ~-the B's--are easy to obtain. This suggests the following algorithm.
p I Step 0. Set the B's at initial trial values. Set the p’s at intial trial
; values. Set f(yl) at initial trial values, e.g., f(yl) = 1/k, for Y1=1,2,...,k.
: ‘ Step 1. Estimate L2 by maximizing f(yl)f(xllyl).
Step 2. For t=2,3,...,n, estimate Ye by maximizing
1 pyt_lyt f(xtlyt,xt_l,...,xl).
Step 3. Now, having labeled the observations, estimate the distributional
parameters, and estimate the transition probabilities by (3,2),

| Step 4. If no observations has changed labels from the previous iteration,

f stop. Otherwise, repeat the procedure from Step 1.

Step 2 is Bayesian classification of Xy s with prior probabilities
% pY ¥y Hence all the techniques for classification in particular models
t-1't
1 are available (e.g., use of linear discriminant functions when the observations

are multivariate normal with common covariance matrix).

3.2. The first iteration

When the k class-conditional processes consist of independent, identically
distributed normally distributed random variables with common variance, one

can start by choosing initial means and labelling the observations by a minimum-

o i distance clustering procedure. [This 1s one iteration of ISODATA (Ball and Hall,
1967). One could iterate further at this stage.] From this clustering
initial estiamtes of transition probabilities and the variance are obtained.

This starting procedure could also be used for fitting AR models by taking the

initial triaI‘vﬂluéﬂ\gf\fffljfforegression coefficients as zero.

—
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3.3. Restrictions on the transitions

As mentioned above, one might wish to place restrictions on the transitions,
e.g., to allow transitions only to adjacent states. The model does permit
restrictions on the transitions, as discussed above. The maximization is

conducted, subject to the condition that the corresponding transition probabili-

ties are zero. This is easily impleménted in the algorithm. Once one sets

a given transition probability at zero, the algorithm will fit no such tran-
sitions, and the corresponding transition probability will remain zero at

every iteration.

4. An Example

Here, for a specific numerical example, the problems of fitting the model

for a fixed k, choice of k, and prediction will be discussed.

Quarterly gross national product (GNP) in current (non-constant) dollars
for the twenty years 1947 to 1966 was considered. (This makes a good size
dataset for the current exposition.) Parameters were estimated from the first
19 years, the last four observations (1966) being saved to test the accuracy
of predictions. (See Section 4.3.) The data and first differences are given
in Table 1. The raw series is nonstationary, so the first differences
(increases in quarterly GNP) were analyzed. The notation is
X, = GNPt+ - GNP

t 1 t’
e.g., GNP, 1s the GNP at the end of the quarter 1947-1, GNP

t=1,2,...,79;

1 is that at the

end of 1947-2, and X = GNP2 - GNP1

quarter of 1947. (A negative value of an x indicates a decrease in GNP

2
is the increase in GNP during the second

for the corresponding quarter.) A Gaussian model was used.

T e

.
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4.1. Fitting the model

In this section we discuss the fitting of a model with k=3 classes,
discussion of the choice between alternative models being deferred to the
next section. The three classes may be taken as corresponding to recession,
recovery, and expansion, although some may prefer to think of the segments
labeled as recovery as level periods corresponding to peaks and troughs.

The approximate maximum likelihood solution found by the iterative procedure

/2

was fl, = -1.3, ﬂz = 6.2, ﬂ3 =12.3, 8 = 5.194l = 2.28 (the units are

1
billions of current (non-constant) dollars) and

.625 .250 .125
P = |.156 .625 .219
.039  .269 .692

The estimated labels are given below; labels (r=recession, e=expansion)
resulting from fitting k=2 classes (see below) are also given.
t: 1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23
label, k=3: 2 2 3 2 2 2 11111 3 3 3 3 3 2 2 2 2 12 3
label, k=2: r r e e e e r r * r r e e € e € e € € r r e e
24 25 26 27 28 29 30 3] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2211112 2 322 2 2222222112333 131
e r T T T T Tr e e e e e Tr TrTr eeTvTrer rr e e e e r
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
232111333332 2223 3 3 33 2 33 3 3
e e r T rr e e e e e e € e e e e e e e e e e e e
The process was in state 1 for 217 of the time, in state 2 for 44% of the time,
and state 3 for 35% of the time.
The conventional wisdom regarding recessions during the period of time

covered by these data includes the following. [See, e.g., Mansfield (1974),

pp. 209-211.] 1In 1948-1949 (t=4 to 11) there was a reduction of inventory
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investment. In 1953-1954 (t=24 to 31) there was a reduction in government
expenditures when the Korean conflict came to a close. In mid-1957 to late
1958 (t=42 Fo 45) an ongoing recession was aggravated by a drop in defense
expenditures in late 1957. 1In 1960 (t=52 to 55) monetary and fiscal authori-
ties had put on the brakes; interest rates had risen substantially during
1958 and 1959.

An interesting feature of the model and the algorithm is that, as the
iterations proceed, some isolated labels change to conform to their neighbors.
This should be the case when Pec is large relative to Peg d=1,2,...,k, d # c.

It is customary to fit an ARI(1,1) model to such data. [See, e.g.,

Nelson (1973), pp. 64-65.] Hence AR(1l)'s were fit within segments in a
preliminary analysis of the data. One might expect that segmentation might
absorb the autocorrelation. This was in fact found to be the case. The values
of the estimated first-order autocorrelation coefficients were not significantly
different from zero. Thus the model with conditiomal independence, given the
labels, was used.

4.2. Choice of number of classes

Various values of k were tried, the results being compared by means of
Akaike's Automatic (model) identification criterion (AIC). [See. e.g.,

Akaike (1981).] The AIC for a given model is

AIC -210geL + 2p,

where L 1is the maximized value of the likelihood and p 1is the number
of parameters in the model. According to AIC, inclusion of an additional
parameter in a model is appropriate if logeL increases by one unit or more,

i.e., if L increases by a factor of e or more.
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The model was fit with several values of k and unrestricted transition
probabilities. Also, since it seems reasonable to restrict the transitions
to those between adjacent states, these models were evaluated as weel. In the
case of k=3, where the states might be considered as recession, expansion,
and recovery, this means setting equal to zero the transition probabilities

corresponding to the transitions, recession-to-expansion and expansion-to-

et e e o -

recession. Also, by way of comparison, the ARI(1,1) model

; xt = ¢xt_1 + § + U, xt = GNPt+1- GNPt,

was fit. The IID model of independent and identically distributed Gaussian
observations was fit also, just for comparison. The results are given in
Table 2. The best segmentation model, as indicated by minimum AIC, is that
with only two classes. [The AIC for AR(1l,1) was even lower.] The AIC for
the IID model was quite large, indicating a very poor fit, as would be

i expected.

The results for k=2 classes (which might be labeled recession, expansion)

-

1 were al = 0.43, 3, = 10.09, d = 3.306, and
1 . . 667 .333°
2 =

.170 .830

The process was in state 1 for 37% of the time and class 2 the other 63% of
the time. The labels were given above.

A model with only two classes enjoys advantages relating to its relative

'“’ simplicity.
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4.3. Prediction

If there is feedback, in the sense that Yt becomes known before X4

is to be predicted, then, given yt= ¢, one can give the prediction

- ~

XerplYe=e =y

~

with probability P

My with probability P.o

-~

with probability Pk

P

3 : Uk

In this example this gives rise to a "recession probability," Py reminiscent

of the "precipitation probability" of meteorology.

Similarly, one has

oy

~ ~

xt+let=c ul with probability pég)
o  (h)
Vo with probability pc2
3
} ‘
. . " (h)
= U with probability Pok
where pé:) is the natural estimate of the k-step c-to-d transition probability,

the c,d-th element of the h-th power of g.

These are vector estimates, with probabilities attached to the elements

k. .
of the vector. A scalar estimate is given by Z p(h) TN
d=1 cd d

Now let us consider prediction based on the model with k=3 classes, fit in

for any h = 1,2,..

Section 4.1. We predict x Consider first the prediction

76° ¥77° %8> and X,

of X76° If, before it had to be predicted, one had been sure, due to the

accumulation of information on various economic indicators, that the process

{ ‘ had then been in an expansion (state 3), then the relevant estimated transition
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probabilities would be .039, .269, and .692, for transitions from state 3

to states 1, 2, and 3, respectively. One would make the prediction

i+

x76|Y75‘3 = -1,3 ¢+ 2,338 with probability .039

= 6.2

+

2.318 with probability .269

+

= 12,3 + 2,321 with probability .692,
where the numbers after * are approximate standard errors of prediction, namely,

[02(1 + llnc)]llz, c=1,2,3, or, since the numbers of observations assigned

1/2

=19, n = 27, [5.194(1 + 1/19)]

/2

to the three groups were n = 29, and n

1 2 3

- 2.338, [5.194Q1 + 1/29)1%/% = 2,318, and [5.196(1 + 1/21)1%/% = 2,321,
The actual value of Xqq Was 19.5, a very strong gain in GNP for that pericod,

certainly consistent with a prediction of "expansion."” The values of §t|yt_1=3,

t =77, 78, 79, are the same as those for ;76|Y75=3‘

The difference 19.5 - 12.3 = 7.2 is rather large. However, the fitted

ARI(1,1) model Xepp = 0.597xt + 2.64, with o= 4.95, also made a large error

for this quarter. It gave a prediction of 13.9, with an approximate standard

error of prediction of 4.95. 1Its successive forecasts for the last three
quarters represented in the data set, in each case using the observation from
the previous quarter, were 14.3, 10.9, and 10.2, each with standard error of
prediction equal to 4.95, compared with actual results of 13.8, 12.6, and 14.8,
respectively.

Now let us consider prediction more than one period ahead. Given
Using the third row

K information for t=75, we predict X,95 X9g9 and x

7 79°

of the second, third and fourth powers of 2, one finds
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x77ly75=3 = -1.3 with prob. .093
. = 6.2 with prob. .364
' = 12.3 with prob. .543,
x78|Y75=3 = -1.3 with prob. .136
= 6.2 with prob. .397
= 12.3 with prob. .467,
x79|Y75=3 = -1.3 with prob. .165
= 6.2 with prob. .408
= 12.3 with prob. .427.
We have
11m] xt+h|Yt=c = =-1.3 with prob. .211
= 6.2 with prob. .411 (4.1)

12.3 with prob. .378,
independent of c and t, because (.211, .411, .378) 1is the estimated long-run

distribution across the states, The predictions of ARI(1,1) are

x77|x75 10.9, std. err. = 5.76,
x78|x75 9.2, std. err. = 6.03,
x79|x75 8.1, std. err. = 6.12,

By way of comparison with (4.1), in the long run, these forecasts from ARI(1,1)
tend to 6.55, the estimated mean of the process, with an estimated standard
error of 6.167, the estimated standard deviation of the x's.

Acknowledgement. This research was supported by Office of Naval Research
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GNP. Units:
(from Nelson (1973), pp. 100-101)

Table 1.

billions of current (non-constant) dollars

Quarter

1

2

3

4

1

2

3

4

1947-48 GNP
AGNP

224

228
4.0

232
4,2

242
10.3

248
5.9

256
7.6

263
6.9

264
1.4

~5.4

1949-50 GNP
AGNP

259

255
-3.3

257
1.9

255

266

11.0

275
9.4

293

17.7

305
11.4

13.5

1951-52 GNP
AGNP

318

326
1.8

333
7.0

340
.6

339

346
6.5

358

12,1

1953-54 GNP
AGNP

364

368
3.3

366
-1.7

361
.1

365
4.3

373
8.7

12.

1955-56 GNP
AGNP

386

394
8.2

403
8.1

411
.8

416
5.6

421
4.4

430
8.9

1957-58 GNP
AGNP

437

440
3.0

446
6.4

435
.8

438
3.6

451
13.1

464
13.0

1959-60 GNP
AGNP

474

487
12.9

484
-2.9

503

12.5

505
1.7

504
-0.5

503
~0.9

1961-62 GNP
AGNP

504

515
11.3

524
9.3

548
10.1

557
9.4

564

7.2

572
1.6

1963-64 GNP
AGNP

577

584
6.8

595
10.5

606
11.

618

11.9

628
10.3

639
10.9

645
6.2

17.

1965-66 GNP

663

676
12.9

691
15.4

710
18.9

730
19.5

743
13.8

756
12.6

171
14.8
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Table 2. Fitting models. (See Section 4.2.)

Model AIC
Segmentation, 2 classes 481.42
f Segmentation, 3 classes, full trans. prob. matrix 483.6
g Segmentation, 3 classes, sparse trans. prob. matrixb 488.5
i Segmentation, 4 classes, full trans. prob. matrix 507.1
Segmentation, 4 classes, sparse trans. prob. matrixb 486.8
i Segmentation, 5 classes, full trans. prob. matrix 506.5+
! Segmentation, 5 classes, sparse trans. prob. matrixb stoppedc
i Segmentation, 6 classes, full trans. prob. matrix stoppedc
' :
| Ar(1)¢ 453.2°
L 11pt 1721.4

Optimum, among segmentation models considered.

Allows transitions only to adjacent states. %

¢. Stopped, i.e., the algorithm reached an iteration where it allocated
no observations to one of the classes.

d. AR(1l) for the differences, i.e., ARI(1,1l) for the original series,

e. Optimum, among all models considered. |

f. Observations treated as a random sample from a normal distribution.
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